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1. Introduction 

We might be experiencing the most rapid and transformative technological 
revolution in human history. In this era of global competition, the strength of 
research and innovation systems (RISs) is the cornerstone of economic 
success and global influence. Despite its considerable collective resources and 
talent, Europe faces a unique fragmentation challenge. The Draghi report 
(2024) highlighted significant internal barriers within the EU, which was 
reiterated in a recent Financial Times column, noting that they effectively 
impose a 45% trade tariff on manufacturing goods and 110% on services.1 In 
this regard, the Letta report (2024) proposed a "fifth freedom" cantered on 
research, innovation, and education, Meanwhile the European Commission’s 
new Competitiveness Compass calls for the removal of cross-border barriers to 
enhance competitiveness and strengthen the Single Market.2  

It is clear that this lack of integration hinders the efficient flow of knowledge and 
innovation, creating major inefficiencies and missed opportunities for 
collaboration. It weakens Europe’s ability to compete with innovation leaders 
like the United States (US), and to address global challenges such as climate 
change and health crises, where cross-border cooperation is essential. 
Although European leaders have highlighted fragmentation as a key obstacle, 
the literature has largely failed to provide robust theoretical frameworks or 
empirical evidence to explain, measure and monitor R&I fragmentation. 

This paper addresses this critical gap by introducing a novel complexity-based 
framework. At its core, our approach examines hub connectivity - the degree to 
which major R&I centres collaborate and share knowledge. By analysing a 
comprehensive dataset combining patent applications (RegPat) and scientific 
publications (OpenAlex) from 2000 to 2023, we provide the first systematic 
comparison of hub connectivity between Europe and the US innovation 
systems. Our analysis spans multiple spatial levels (from urban areas and 
functional urban areas to larger regional units) and covers two domain 
categories: the aggregate of all technologies (all) and by technological field as 
classified by the World Intellectual Property Organization (WIPO categories). 
This multi-scalar approach allows us to capture the multifaceted nature of R&I 
networks and test the robustness of the framework.  

Our analysis highlights three key findings. First, the European R&I system is 
significantly more fragmented compared to the US, with major European hubs 
showing notably weaker interconnectivity. Second, we show that hub 
connectivity is particularly important for complex technologies. Third, 
fragmentation within Europe is most pronounced in these complex 
technological domains, posing a major competitive disadvantage in strategic 
sectors. These findings have significant implications for EU innovation policy 
and suggest the urgent need for targeted interventions to enhance cross-

 

1 Forget the US — Europe has successfully put tariffs on itself 
2 Competitiveness compass - Consilium 

https://www.ft.com/content/13a830ce-071a-477f-864c-e499ce9e6065
https://www.consilium.europa.eu/en/policies/competitiveness-compass/
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regional R&I collaboration in more advanced and sophisticated technology 
fields. 

By establishing a clear empirical foundation for understanding R&I 
fragmentation and its consequences, this paper aims to inform more effective 
policy interventions to strengthen Europe's position in the global innovation 
landscape. The findings presented have significant implications for research 
collaboration, innovation policy, and the future of technological competitiveness 
in an increasingly complex world.  

The remainder of this paper is structured as follows. Section 2 provides an 
overview of the theoretical framework underpinning the analysis, highlighting 
the key costs associated with RIS fragmentation, and introducing the 
hypotheses tested in this paper. Section 3 describes the data employed and 
develops the proposed empirical framework. Sections 4 and 5 discuss the key 
results and the robustness checks carried out to validate the empirical findings. 
Section 6 concludes the paper, discussing the policy implications of the results. 

2. The cost of fragmentation 

The fragmentation of RISs across Europe significantly undermines its 
competitiveness in the global innovation landscape. Unlike the US, which 
benefits from a cohesive and strategically aligned R&I strategy, Europe 
contends with a multiplicity of approaches that, in the absence of a unifying 
vision, can weaken its collective potential.  

Within Europe, each Member State largely pursues its own innovation priorities, 
shaped by local economic needs and political agendas. With 27 national 
innovation strategies, funding for R&I is often dispersed and misaligned across 
Member States, while only about 10% of total R&I spending is managed 
through more directed EU-wide programmes (Draghi, 2024). This fragmentation 
hinders Europe from focusing on a cohesive set of key technologies essential 
for global competitiveness, leading to suboptimal investment in strategic areas. 
This disparity is especially problematic for complex technologies, such as AI or 
quantum computing, which require significant and concentrated investment to 
reach scale.  In contrast, the US benefits from a single national strategy, 
ensuring a more coordinated allocation of resources and a clearer alignment 
between investment priorities. 

The European R&I fragmentation also leads to massive, missed opportunities 
for network effects. Scaling complex technologies requires strong network 
effects, achieved through interconnected ecosystems of researchers, 
companies, and institutions. Member States' siloed strategies prevent the 
formation of pan-European networks thereby limiting the cross-border 
collaboration and knowledge-sharing needed for scaling technologies. The US 
benefits from a large, unified market supported by federal programmes that 
actively foster collaboration and knowledge sharing across States. The lack of 
a coordinated R&I strategy across Member States leads to missed 
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opportunities for collaboration and synergy. This isolation limits the potential for 
cross-border projects that could leverage diverse expertise and resources, 
ultimately resulting in a weaker innovation output. 

In addition, fragmentation in R&I causes duplicated efforts among Member 
States, leading to the inefficient use of resources. The lack of coordination 
often means that multiple entities independently pursue similar projects, which 
typically result in small-scale efforts that struggle to compete in a technological 
ecosystem driven by a winner-takes-all model. This wastes both funding and 
manpower, while also failing to produce meaningful advancements or generate 
proportional value in terms of knowledge.  

The cost of fragmentation is further evident in the incompatibility of policies and 
standards across Member States. Different regulatory frameworks, labour laws, 
and visa procedures create friction, making it difficult to deploy and scale 
advanced technologies across Europe. For instance, a technology developed in 
Germany may face hurdles in Italy due to differing standards, similarly a non-
European software engineer hired in France might struggle to relocate to the 
Netherlands. 

Furthermore, the absence of a true European capital-market union further 
exacerbates R&I fragmentation. The Draghi report highlights a concerning 
trend: over one-third of European unicorns relocate to the US, attracted by a 
more favourable investment climate (Draghi, 2024). This capital flight 
diminishes the financial resources available for R&I in Europe and signals a 
loss of confidence in its ability to nurture and support its own innovative 
enterprises.       

Finally, fragmentation in R&I ecosystems makes Europe less attractive to 
global talent by creating inefficiencies and barriers. Unlike more integrated 
ecosystems, such as the US, Europe's fragmented approach results in a 
perceived lack of opportunities and mobility for researchers and innovators. 
Inconsistent funding mechanisms, regulatory discrepancies, and limited 
opportunities for cross-border collaboration are huge limiting factors. For 
example, navigating the French R&I system involves mastering unique rules 
and networks, creating significant barriers to researcher and firm mobility when 
transitioning to another European system. In contrast, while the US system also 
exhibits state-level variations, it offers greater flexibility and facilitates smoother 
transitions between States and industries as institutional and bureaucratic 
complexities are more limited (e.g., Shapira, et al., 2010). In Europe, however, 
targeting one country's system often does not translate into broader mobility or 
integration across the continent. Over time, this lack of mobility and 
coordination can exacerbate brain drain, as Europe's most talented individuals 
seek out ecosystems with deeper resources and easier access to global 
markets. 
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2.1 The Geography of R&I collaborative networks in Europe and US 

From a historical perspective, the structure of the US innovation economy 
started to undertake a significant transformation as of the beginning of the 20th 
century, when an increasing number of collaborative ties between East and 
West Coasts started to emerge (Abbasiharofteh et al., 2024). Recent evidence 
also suggests that the US highly innovative hubs tend to collaborate more both 
nationally and internationally, representing key global innovation hotspots 
characterised by higher degree of connectivity within the global innovation 
network (WIPO, 2019). On the contrary, R&I collaborations in Europe still 
largely occur between actors located within the same national borders, while 
cross-country collaborations are mostly limited to cross-border regions 
(European Commission, 2024). Despite the increasing internationalisation of 
innovation and scientific activities, the integration of the European R&I network 
still faces important challenges (Chessa et al., 2013), and only a few global 
innovation hubs have been able to emerge in Europe, notably in the United 
Kingdom (UK), France and Germany (WIPO, 2019). 

As highlighted in the previous section, this gap between the European and the 
US R&I systems can be attributed to the EU's structure as a union of multiple 
sovereign States, which makes the European science and innovation space 
highly heterogeneous. Such heterogeneity translates into a broad set of diverse 
national priorities that can lead to lack of coordination and to duplication of 
efforts, with each Member State having its own research agenda, funding 
mechanisms, and policy frameworks.  

Scientific and innovation activities are territorial embedded processes that need 
specific structural and institutional conditions to thrive (Rodriguez-Pose & 
Crescenzi, 2008). In a fully integrated research system, collaboration partners 
should be identified exclusively based on scholarly considerations. However, 
spatial heterogeneity still represents a non-negligible determining factor, with 
geographical proximity still playing a key role in facilitating and explaining the 
participation in collaborative knowledge production activities, especially in 
relation to the transfer of tacit knowledge (e.g., Okubo & Zitt, 2004; Maggioni & 
Uberti, 2007; Hoekman et al., 2009; Moreschalchi et al. 2015; Lata et al., 
2017). At the same time, other forms of proximities also need to be considered 
(Boschma, 2005). As an example, institutional differences between countries 
and regions represent an important challenge to the development of R&I 
collaborations between different national R&I systems. This is particularly 
relevant in the European case, where the presence of persistent language, 
cultural and legal barriers create further obstacles to effective R&I 
collaborations between European regions and countries, even after controlling 
for geographical distance (Hoekman et al., 2010; Scherngell & Barber, 2011). 
The same holds for the US (Singh & Marx, 2013), although recent evidence 
suggests that the importance of institutional proximity has been diminishing 
over time (Abbasiharofteh et al., 2024).  

Despite the important progress in the economic integration process, key 
institutional settings in research infrastructures, education systems and labour 
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markets in the EU are still largely defined at national level (Banchoff, 2002; 
Crescenzi et al., 2007). Additionally, while Europe can count on centralized 
funding programmes, like the EU Framework Programme (FP) for R&I, 
fragmentation in resource allocation persists, as a significant portion of R&I 
funding comes from national or regional sources. This makes the European 
innovation system still largely dominated by distinct national and regional 
institutions, with diverse priorities aiming at improving local scientific or 
technological capacities to boost regional competitiveness (Bristow, 2005; 
Crescenzi et al., 2007). 

Based on these considerations, the first hypothesis that this paper will test is 
that the European R&I system is more divided and less efficient compared to 
that of the US: 

H1: The R&I system is more fragmented in Europe than in the US 

2.2 Complexity and the structure of R&I systems 

R&I processes are inherently interactive processes involving an increasing 
number of interconnected actors (Morgan, 2007; Autant-Bernard et al., 2007). 
Furthermore, as the knowledge frontier expands, so does the volume of 
information that needs to be processed to generate new ideas and innovations 
(Jones, 2009). This increasing “burden of knowledge” adds on the complexity 
and interconnectedness of the knowledge space, making the invention and 
innovation process more difficult (Fleming and Sorenson, 2001). This is 
particularly relevant for more complex technologies, whose development 
strongly hinges on the availability of multidisciplinary expertise that cannot 
easily be found in a single location. The diverse and specialised knowledge 
underpinning this type of technologies is typically less easy to replicate and 
transfer across regions, making complex technologies particularly “sticky” in 
space, and explaining why they tend to be deeply rooted in specific 
environments, where the necessary expertise and resources are concentrated 
(e.g., Fleming & Sorenson, 2001; Hidalgo & Hausmann, 2009; Balland & Rigby 
2017).  

In addition, as knowledge and technology clusters grow, they attract more 
skilled professionals and resources (Marshal, 1920; Porter, 1990). This creates 
positive self-reinforcing feedback loops, which further increase concentration 
and the dominance of highly innovative hubs, thereby contributing to the 
geographic and economic centralisation of specialised and complex knowledge 
(e.g., WIPO, 2019; Balland et al., 2020). The geographic distribution of complex 
technologies and scientific activities is, thus, likely to differ from the broader 
patterns of invention and innovation. Investigating the development over time of 
breakthrough inventions in the US, Esposito (2023) finds that during the 20th 
century inventors based in areas endowed with a richer and more diverse pool 
of ideas were more likely to develop breakthroughs than those located in 
regions lacking this type of attributes. Since only a few places can provide the 
right conditions for the necessary competences for the development of complex 
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activities (Hidalgo & Hausmann, 2009), complex knowledge strongly hinges on 
local interactions and intense collaborations than less complex one (e.g., 
Balland & Rigby 2017; Van der Wouden, 2020; Abbasiharofteh et al., 2024).  

As noted by Balland & Rigby (2017), the development of complex technologies 
strongly relies on the transfer of tacit knowledge, which binds them to specific 
geographic regions. However, as the knowledge space becomes more 
complex, important innovation locations cannot solely rely on the knowledge 
inputs coming from their countries’ national science and innovation systems, 
but rather need to increase their participation in international collaboration 
networks to facilitate the exchange of ideas and skills across borders (WIPO, 
2019). As specialised knowledge clusters, accessing expertise that are outside 
a given area’s core strengths calls for the creation of new bridges across both 
knowledge fields and geographic locations, thereby making the global 
integration of collaborative efforts essential for complex innovation and 
scientific activities to thrive (Cantwell & Salmon, 2018).  

Understanding how complexity can mediate the relationship between 
collaborations and geography is receiving increasing attention from both the 
academic and policy literature. Recent empirical evidence suggests the 
existence of a strong positive relationship between complexity and inventors’ 
collaborations across regions and countries in both Europe and the US (Van 
der Wouden, 2020; European Commission, 2024). Notwithstanding that the 
“local buzz” within innovation clusters remains essential, this evidence also 
suggests that strengthening international cooperation, knowledge exchange, 
and integration of R&I systems is crucial to fostering knowledge creation and 
increasing the overall competitiveness of R&I ecosystems, particularly in more 
complex fields (Bathelt et al., 2004). 

To summarise, we expect complex technologies to suffer disproportionately 
from fragmentation because their development involves multiple interdependent 
components and knowledge domains. Based on this consideration, this paper 
will contribute to the literature by testing the following second hypothesis: 

H2: Integration in the R&I system is particularly important for complex scientific 
fields and technologies. 

Additionally, given the aforementioned bottlenecks faced by the European R&I 
system, as well as the important innovation gap between Europe and the US 
(European Commission, 2024; Draghi, 2024), we also postulate another 
hypothesis. We consider that the impact of fragmentation on technological 
development can be understood through a multiplicative effect. Both Europe 
and the US face a baseline level of fragmentation that similarly affects simpler 
technologies. However, for complex technologies, fragmentation acts as a 
multiplier, amplifying coordination challenges due to their exponentially greater 
need for interactions and knowledge transfers across diverse domains. In 
Europe, institutional, linguistic, and regulatory barriers compound these 
challenges far more than in the US, where a more integrated system mitigates 
such effects. As a result, while the Europe-US gap is modest for simpler 
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technologies, it becomes significantly larger for complex technologies, where 
fragmentation hits hardest. Therefore, we propose to test the following third 
hypothesis:  

H3: The degree of R&I fragmentation in Europe (compared to the US) is 
particularly pronounced in complex technologies. 

3. Data, measures and methods 

3.1 Sample and regional definitions 

We test our hypotheses using two separate datasets, each containing 
information on collaborations within Europe and the US at urban area level, 
respectively. The choice of focusing on the European network including the 27 
Member States, the UK and the EFTA countries is based on several 
considerations. First, given the time span considered in the analysis, the 
inclusion of the UK ensures consistency between pre- and post-Brexit periods. 
The UK’s recent association to Horizon Europe further justifies its inclusion. 
Second, both the UK and EFTA countries are important contributors to 
European R&I. As the EU actively promotes collaborations with these nations 
to strengthen the European Research Area (ERA), excluding them would 
overlook key nodes of the European collaborative network and potentially 
distort the overall picture of European R&I activity. Third, ensuring a broader 
understanding of European R&I collaborative activity when benchmarking it 
with the US remains key also from a policy perspective, allowing the analysis to 
deliver more comprehensive insights to inform strategic decisions.   

To define urban areas, we follow the classification provided by the United 
Nations as published in the World Urbanization Prospect report (see United 
Nations, 2018). This classification largely relies on national definitions, 
reflecting the definitions and criteria established by national authorities. The 
analysis covers 168 urban areas within Europe and 144 urban areas in the US, 
between 2000-2023. For publications, the sample includes 166 urban areas in 
Europe and 142 in the US. 

3.1.1. Patent data 

To collect information on patents, OECD REGPAT (release version February 
2024) was used. Patents contain information on the address of inventors and 
assignees, citations, and information on the technical content (IPC technology 
classes), amongst others. We use information on patent applications filed 
under the Patent Cooperation Treaty (PCT) and geocoded addresses of 
inventors listed on each patent to assign patents to urban areas (Cresenzi et 
al., 2016). We identify patent collaborations between urban areas based on the 
collaborations between co-inventors listed on the same patent.   
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Collaborations are further categorized by technology domain. Patents were 
assigned to 36 technological fields using the WIPO classification system 
following Schmoch (2008), which maps IPC codes to broader technology 
groups. 

3.1.2. Publication data 

Publication data was sourced from OpenAlex, a comprehensive open-source 
bibliographic database encompassing over 209 million publications across 221 
countries and territories. Publications contain information on the institutional 
affiliation of the author, which was geocoded to link each publication to a 
particular urban area. We identify publication collaborations between urban 
areas based on the collaborations between co-authors listed on the same 
publication. Publications were categorised into scientific domains for further 
analysis.  

To classify individual research topics from OpenAlex into broader categories, 
we employed a multi-step methodology combining advanced embedding 
techniques, statistical analysis, and LLM-based decision-making. First, we 
extracted embedding vectors for both research topics and broader categories 
using OpenAI's "text-embedding-3-large" model, which captures high-
dimensional semantic representations. To establish initial associations, we 
computed embedding similarity scores between topics and categories, 
leveraging cosine similarity to quantify semantic proximity. Next, we refined 
these associations by calculating embedding relatedness density, which 
measures the embedding similarity of co-occurring topics within the dataset. 
This step allowed us to assess the actual contextual and relational connections 
between topics, moving beyond purely semantic similarity to capture real-world 
co-occurrence patterns. Based on these refined associations, we used OpenAI 
API (GPT-4o) to perform last step categorization, where the LLM integrated the 
embedding similarity and relatedness density metrics to make informed 
classification decisions. Finally, to minimize false positives, we manually 
defined a threshold for inclusion, ensuring that only robust and meaningful 
topic-category mappings were retained. This hybrid approach combines the 
strengths of embedding-based semantic analysis, statistical validation, and 
LLM reasoning to achieve a nuanced, scalable and accurate classification of 
research topics. 

3.2 The research and innovation system gap 

To quantify the fragmentation and efficiency of the RISs, the paper introduces a 
new indicator, namely the Research & Innovation System Gap (RISG). It 
measures the correlation between the actual observed and expected 
connections among spatial units, such as urban areas.  

Observed connections are the actual collaborative interactions or links (edges) 
between two spatial units (nodes), such as urban areas or functional urban 
areas (FUAs), derived from co-inventor locations listed on patents or 
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publication documents. For example, in Figure 1 we have 5 inventors; 2 of 
them are co-located in Santa Clara, California (CA). In this case we will have 
one link between Santa Clara and London, and also a link within Santa Clara, 
CA. But we do not double count the two links between London and Santa 
Clara, CA. 

Figure 1. Counting links 

 

Expected connections represent how collaborations should ideally be 
distributed in an optimal, fully integrated system where exchanges occur in 
proportion to the size and potential of each region. To measure the expected 
number of connections, we first calculate the theoretical maximum number of 
links between regions based on their degree of centrality (i.e., the number of 
direct connections a node has). For example, if Santa Clara, CA has 100 
connections and London has 80, the maximum possible links between them 
would be the average of these values, 90. 

We then compute the expected number of connections between regions by 
determining the fraction of the total theoretical maximum that each pair of 
regions represents, and weigh this by the total observed links in the network. 
This ensures that the sum of expected links matches the total number of 
observed links. Essentially, this method distributes the total observed links 
across regions in proportion to their respective size thereby giving an 
expectation of how many links each pair should have if the observed links were 
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distributed according to the theoretical maximum proportions (i.e. based on the 
sum of their weighted degree centrality) (Granovetter, 1985). 

We then calculate the RISG as the correlation coefficient between the observed 
and expected links at the network level. This correlation serves as an indicator 
of integration and efficiency within a R&I system. A low RISG indicates that 
actual connections fall short of what would be expected, which signals network 
inefficiency and major system failure. This is in line with principles of social 
network analysis and the gravity model of collaboration in network science: just 
as larger masses in physics exert stronger gravitational pulls, larger urban 
centres are expected to attract and form more connections within R&I 
networks. When major cities are not as well-connected as expected, it suggests 
the presence of barriers or inefficiencies, rather than a well -integrated system 
where knowledge, resources, and innovation flow as freely as they should, 
reflecting the need for Letta’s 5th freedom (Letta, 2024).  

In contrast, a higher RISG suggests less fragmentation and inefficiencies as 
the actual network structure aligns more closely with what would be expected in 
a perfectly integrated system. This suggests that knowledge and ideas can flow 
more freely across the R&I system and that R&I activities are occurring where 
they are most likely to be productive, based on the size and capacity of each 
region. Generally, the closer the network is to the expected distribution of links, 
the more efficient the system is likely to be as a whole. This efficiency can 
translate into faster innovation, better use of resources, and potentially higher 
economic returns from R&I activities. 

In essence, the RISG provides a quantitative measure of how close a R&I 
system is to an optimal and fully integrated network. It can be applied to any 
general set of collaborations as well as to a specific set of technologies. By 
comparing observed and expected collaborations between regions, RISG 
allows for meaningful comparisons across different systems, enabling 
policymakers to evaluate the current state of integration within their RISs.  

While in this paper, the RISG is implemented using patent and publication data, 
it can be used in a much broader context to measure various network aspects 
such as funding or mobility. Understanding these gaps can help policymakers 
and researchers identify where interventions might be needed. 

3.3 Poisson pseudo-maximum likelihood (PPML): model and 
variables 

To show the robustness of the results, the paper also includes a controlled 
version of the RISG using econometric estimations. Given that the analysis 
examines collaboration patterns between urban areas by counting their 
connections, the likely presence of overdispersion and a large number of zero 
observations makes quasi-Poisson regression, negative binomial regression, or 
zero-inflated models the preferred approaches. Specifically, a Poisson Pseudo-
Maximum Likelihood (PPML) is chosen over Negative Binomial models for 
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estimating a gravity model since the latter underperforms when the number of 
observed zeros exceeds the number of zeros predicted by the model, e.g., in 
the case of a complete lack of co-patenting between regions due to reasons 
other than distances and differences in preferences and specializations (Burger 
et al., 2007). Additionally, the PPML estimator offers a more tractable empirical 
strategy for incorporating fixed effects and handling multilateral resistance 
terms3, making it a robust choice for estimating collaboration intensity through 
co-patents and co-publications between geographical units (Santos-Silva & 
Tenreyo, 2006; Fally, 2015; Santos-Silva & Tenreyo, 2022). 

To assess whether the R&I system is more fragmented in Europe compared to 
the US (Hypothesis 1), we specify the model as follows: 

(1) 𝐺𝑒𝑜𝐿𝑖𝑛𝑘𝑠𝑖,𝑗,𝑡 =  𝛼 + 𝛽1𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 +   𝛽2𝐷𝑖𝑠𝑡𝑖,𝑗  +   𝛽3𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗 + 𝜔𝑡  + 𝜀𝑖,𝑗,𝑡 

where 𝐺𝑒𝑜𝐿𝑖𝑛𝑘𝑠𝑖,𝑗,𝑡 is a count variable indicating the number of (patent or 

publication) collaboration links between urban area 𝑖 and urban area 𝑗, for a 
given technological or scientific domain 𝑐, in year 𝑡. As previously mentioned, a 
collaboration link is created when two co-inventors/authors are named on the 
same patent/publication with both located in a different urban area. 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 captures the combined size of the two interacting urban areas proxied 

by the total number of collaborations of urban areas 𝑖 and 𝑗 observed in year 𝑡. 
𝐷𝑖𝑠𝑡𝑖,𝑗 refers to the geographical distance between the two urban areas, 

measured as the great-circle distance between the centres of the two urban 
areas (e.g., Hoekman et al., 2010; Lata et al., 2017). The term 𝜔𝑡  denotes the 
time fixed effects, introduced to account for unobserved time-specific factors, 
whereas 𝜀𝑖,𝑗,𝑡  denotes the error terms. Since observations in pairs of regions 

per technology/scientific field are likely to be dependent across years, robust 
standard errors are clustered to control for error correlation in the panel 
(Montobbio & Sterzi, 2013). 

Specification (1) is extended to examine how integration in the R&I system 
affects complex technologies and scientific fields (Hypothesis 2), as well as to 
assess the extent to which R&I fragmentation in Europe is particularly 
pronounced in complex technologies compared to the US (Hypothesis 3): 

(2) 𝐺𝑒𝑜𝐿𝑖𝑛𝑘𝑠𝑖,𝑗,𝑐,𝑡

=  𝛼 + 𝛽1𝑀𝑎𝑠𝑠𝑖,𝑗,𝑐,𝑡 +   𝛽2𝐷𝑖𝑠𝑡𝑖,𝑗  + 𝛽3𝑇𝑒𝑐ℎ𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑖,𝑗,𝑐,𝑡

+  𝛽4𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗 + 𝜔𝑐  +  𝜔𝑡 + 𝜀𝑖,𝑗,𝑡 

The additional control 𝑇𝑒𝑐ℎ𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑖,𝑗,𝑐,𝑡  captures the technological proximity 

between 𝑖 and 𝑗. Technological proximity estimates the difference in presence 

 

3 In a standard gravity model with trade data, multilateral resistance terms capture the barriers to 
trade that each country faces with all its trading barriers. 
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of knowledge capabilities and absorptive capacity4 in both locations. If the 
technological proximity between actors is too low, it may discourage 
collaborations as both actors may not be able to understand and exploit new 
complementary knowledge (e.g., Boschma, 2005; Cohen & Levinthal, 1990). 
𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗 denotes a dummy variable taking value 1 if the two urban areas 

are located within the same country or State for Europe and the US, 
respectively. This variable approximates institutional proximity as being located 
within the same country, sharing the same language and/or similar values, 
norms, routines and formal regulations can facilitate collaboration (Maskell & 
Malmberg, 1999; Boschma, 2005). The two terms 𝜔𝑐  and 𝜔𝑡 represent 
respectively the technology/scientific domain 𝑐 fixed effect and the time 𝑡 fixed 
effect. As before, robust standard errors are clustered. 

All continuous variables were logarithmically transformed. The logarithmic 
transformation in the context of our model allows the estimated coefficients to 
be interpreted as elasticities. To ease the comparison between the results 
obtained for Europe and the US, we standardise the continuous variables 
included in our model. Descriptive statistics for all the variables are presented 
in Table 1 and their correlation coefficients are presented in Table 2. Both 
tables reflect the variables in the sample with aggregated domains.  

Table 1 indicates that collaboration links are more frequent for publications 
than patents, with the US showing a higher mean for patent links, suggesting a 
more interconnected innovation network. The mass variable is larger in the US, 
particularly for patents, potentially reflecting stronger innovation hubs. 
Geographical distance between collaborating urban areas is greater in the US 
for both patents and publications, consistent with its larger land area and the 
possibility that long-distance collaborations are more common. Meanwhile, the 
same country/state variable shows that intra-country collaborations are slightly 
more prevalent in the Europe for patents and in the US for publications. 

Table 1. Descriptive statistics 

 Patents 

  Europe United States 

Variable Mean Std. Dev. Mean Std. Dev. 

𝐺𝑒𝑜𝐿𝑖𝑛𝑘𝑠𝑖,𝑗,𝑡  1,57 13,38 8,70 49,62 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡  837,59 929,13 3086,75 3369,32 

𝐷𝑖𝑠𝑡𝑖,𝑗  1101,58 622,89 1861,51 1244,81 

𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗/State 0,10 0,31 0,05 0,21 

 
 
 

 

4 Knowledge capabilities refer to the ability to create, access and apply knowledge effectively 
while absorptive capacity is the ability to recognize, assimilate and apply external 
knowledge. 
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Publications 

  Europe United States 

Variable Mean Std. Dev. Mean Std. Dev. 

𝐺𝑒𝑜𝐿𝑖𝑛𝑘𝑠𝑖,𝑗,𝑡  215,21 926,28 160,61 767,27 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡  100120,00 153838,50 90250,08 119040,60 

𝐷𝑖𝑠𝑡𝑖,𝑗  1851,51 1238,02 1107,47 626,30 

𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗/State 0,04 0,21 0,10 0,30 

Note: The descriptive statistics are non-standardized and non-log transformed 

Table 2 indicates a positive correlation between mass and geo links, which is 
stronger in the US for patents and publications than in Europe. Distance 
negatively correlates with geo links in both cases, suggesting that proximity 
facilitates collaboration. However, the effect is more pronounced in Europe for 
patents compared to the US, suggesting that geographic constraints may be 
stronger in Europe. The correlation between being in the same country or state 
and collaboration is positive across both regions, though its influence is slightly 
stronger in Europe for patents than in the US.  

Table 2. Correlations 

  Patents 

    Europe United States 

  Variable     1     2 3 4 1 2 3 4 

1 𝐺𝑒𝑜𝐿𝑖𝑛𝑘𝑠𝑖,𝑗,𝑡 1    1    

2 𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 0,2618 1   0,2653 1   

3 𝐷𝑖𝑠𝑡𝑖,𝑗 -0,1408 -0,2134 1  -0,0558 0,0719 1  

4 𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗/State 0,2424 0,0168 -0,4065 1 0,1309 0,0316 -0,2673 1 
  

  Publications 

    Europe United States 

  Variable 1 2 3 4 1 2 3 4 

1 𝐺𝑒𝑜𝐿𝑖𝑛𝑘𝑠𝑖,𝑗,𝑡 1    1       

2 𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 0,4710 1   0,6223 1    

3 𝐷𝑖𝑠𝑡𝑖,𝑗 -0,1214 -0,0606 1  -0,0263 0,0095 1   

4 𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗/State 0,2210 -0,0116 -0,4049 1 0,0109 -0,0212 -0,2716 1 
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4. Results and discussion 

4.1 The European R&I system is more fragmented than the US 

When looking at patents, the US demonstrates a more cohesive R&I system 
compared to Europe, confirming Hypothesis 1. The US system exhibits a strong 
RISG5 with correlation of 0.68 between observed and expected links, indicating 
that actual collaborative relationships between research hubs largely align with 
predictions based on their size and capacity. This is visually confirmed through 
network analysis6 showing connections that span across the entire country 
without significant border-related clustering (Figure 2, denser lines indicate a 
larger number of links). 

Figure 2. R&I systems in the US (patents) 

 

Note: For an interactive visual representation, you can visit the following webpage: 
https://www.paballand.com/asg/network-complexity/complexity-regpat-pct-2019-2023-us.html 

 

5 We transformed both the expected and observed link counts using logarithmic scaling and 
excluded all internal connections from the analysis. When we performed alternative 
analyses using rank correlation coefficients and untransformed metrics, while also including 
internal connections, we obtained qualitatively similar results. 

6 Huge thanks to Carlos Navarrete and Francisco Rios for their invaluable contributions in 
developing the front-end for our dynamic network visualisation, including seamless 
interactivity, real-time rendering, and edge bundling techniques. 
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In contrast, the European R&I system shows considerable fragmentation, with a 
markedly lower RISG correlation of 0.40 for patent data. The European network 
displays distinct clustering around national boundaries, suggesting that country 
borders still act as significant barriers to R&I collaboration (Figure 3). This 
substantial gap between expected and observed connections indicates that 
factors beyond size and distance, such as national policies, language barriers, 
or institutional frameworks, play a more significant role in shaping European 
R&I partnerships. 

Figure 3. R&I systems in Europe (patents) 

 

Note: For an interactive visual representation, you can visit the following webpage: 
https://www.paballand.com/asg/network-complexity/complexity-regpat-pct-2019-2023-eu.html 
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The scientific publication landscape reveals a somewhat different picture, 
though still maintaining the US-Europe disparity. The US achieves an 
impressive RISG of 0.81 for scientific publications, indicating an extremely well -
integrated academic research network. This suggests that US academic 
institutions collaborate effectively across state boundaries, creating a more 
unified research ecosystem (Figure 4). 

Figure 4. R&I systems in the US (publications) 

 

Note: For an interactive visual representation, you can visit the following webpage: 
https://www.paballand.com/asg/network-complexity/complexity-openalex-2019-2023-us.html 

While Europe shows stronger integration in scientific publications compared to 
patents, with an RISG of 0.76, it still lags behind the US benchmark. This 
higher RISG for European publications versus patents (0.76 compared to 0.40) 
suggests that academic research in Europe has achieved greater cross-border 
integration than industrial R&D activities. This could potentially be due to 
structural mechanisms fostering cross-border academic collaborations, such as 
EU-wide funding frameworks, shared data and open science norms. However, 
the persistent gap between EU and US figures indicates that even in academic 
research, Europe has not yet achieved the same level of integration as the US. 
This is despite having hubs spatially closer in Europe than in the US (Figure 
5).  
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Figure 5. R&I systems in Europe (publications) 

 

Note: For an interactive visual representation, you can visit the following webpage: 
https://www.paballand.com/asg/network-complexity/complexity-openalex-2019-2023-eu.html 

To validate the findings of the RISG analysis, we employ a PPML regression 
model incorporating high-dimensional fixed effects to examine the 
fragmentation of R&I systems in Europe and the US. Our approach to model 
specification involves a stepwise inclusion of the regressors considered, 
allowing us to evaluate the incremental contribution and statistical significance 
of each variable. Table 3 to 6 report the results from estimating specification (1) 
for patent and publication data, respectively. 
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Table 3. Econometric results for patent collaborations in Europe 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 2.405*** 1.928*** 1.868*** 1.799*** 

  (0.117) (0.061) (0.065) (0.049) 

𝐷𝑖𝑠𝑡𝑖,𝑗 
 

-0.901*** 
 

-0.554*** 

  
 

(0.018) 
 

(0.026) 

𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗 
  

2.981*** 1.852*** 

  
  

(0.062) (0.083) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 68642 68642 68642 68642 

Wald Chi-sq 424.591 4179.690 2734.138 5329.227 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. When limiting the sample to the 27 Member States of the European Union, similar 
results were found for Mass and Distance while Same Country coefficients were even higher.  

 

Table 4. Econometric results for patent collaborations in the US 

 
(1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 1.989*** 2.009*** 1.904*** 1.997*** 
 

(0.078) (0.057) (0.061) (0.054) 

𝐷𝑖𝑠𝑡𝑖,𝑗 
 

-0.494*** 
 

-0.472*** 
  

(0.031) 
 

(0.026) 

𝑆𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒𝑖,𝑗 
  

1.303*** 0.132 
   

(0.134) (0.083) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 51480 51480 51480 51480 

Wald Chi-sq 655.681 1282.790 985.844 1551.207 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 

 

As concerns patent collaborations, the results displayed in Tables 3 and 4 
confirm that the size of the interacting urban areas positively influences the 
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likelihood for collaborations. With the exception of the simplest specification 
estimated, the US consistently reports slightly higher and statistically significant 
mass (𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡) coefficients compared to Europe, reflecting a stronger role of 

urban hubs as anchors for national-level R&I activities. The observed negative 
effect of geographical distance (𝐷𝑖𝑠𝑡𝑖,𝑗) in both areas is in line with the existing 

literature. This effect is notably stronger within Europe, indicating the greater 
role of geographical distance as a barrier to collaborations. In contrast, the 
smaller coefficient for the US can be interpreted as a further indication of a 
more integrated system that facilitates collaborations across greater distances. 

Another notable finding is the strong positive effect of being located in the 
same country (𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗 for Europe) or same State (𝑆𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒𝑖,𝑗  for US). 

The stark difference between both coefficients highlights the dominance of 
intra-country collaborations in Europe, pointing to the existence of structural 
barriers (e.g., language barriers and regulatory differences), that impede cross-
border interactions. By contrast, the US is characterised by a more balanced 
pattern of collaboration across States’ boundaries, reflecting a more integrated 
innovation system. 

Table 5. Econometric results for scientific collaborations in Europe 

 (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 2.313*** 2.294*** 2.272*** 2.281*** 
 

(0.052) (0.051) (0.034) (0.036) 

𝐷𝑖𝑠𝑡𝑖,𝑗 
 

-0.519*** 
 

-0.131*** 

  
 

(0.014) 
 

(0.019) 

𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗 
  

1.884*** 1.671*** 

  
  

(0.037) (0.055) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 68310 68310 68310 68310 

Wald Chi-sq 1966.521 2790.104 4812.953 4752.349 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. Similar results are obtained for patent collaborations taking into account the 27 
Member States of the European Union. 
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Table 6. Econometric results for scientific collaborations in the US 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 2.911*** 2.891*** 2.925*** 2.898*** 
 

(0.052) (0.049) (0.052) (0.049) 

𝐷𝑖𝑠𝑡𝑖,𝑗 
 

-0.165*** 
 

-0.153*** 

  
 

(0.020) 
 

(0.023) 

𝑆𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒𝑖,𝑗 
  

0.504*** 0.155 

  
  

(0.083) (0.101) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 49914 49914 49914 49914 

Wald Chi-sq 3171.182 3621.697 3230.525 3607.233 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 

In terms of scientific collaborations, the insights from the RISG analysis are 
corroborated by the econometric results (Tables 6 and 7). Although the US 
continues to report higher coefficients for mass (𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡), the gap with Europe 

is less pronounced than for patent collaborations. This result further supports 
our finding that Europe has overall made more progress in integrating its 
research system as compared to its innovation network. Nevertheless, the 
consistently positive and statistically significant coefficients associated with 
being located in the same country (𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗 ) confirm that Europe remains 

bounded by national borders and institutional constraints, limiting its capacity to 
further strengthen cross-border scientific collaborations.    

4.2 R&I systems of complex technologies are less fragmented and 
more efficient  

In order to validate hypothesis 2, we examine the relationship between 
technological complexity7 and the mass coefficients derived from separate 
regression analyses for each technology category8. The mass coefficient (as 

 

7 To measure complexity, patent applications were assessed based on technological diversity 
(i.e., the range of technologies an economy specialises in) and ubiquity (i.e., the number of 
economies specialising in a given technology) following Hidalgo & Hausman (2009) and 
Balland & Rigby (2017). Higher values for the knowledge complexity index (KCI) indicate 
greater technological diversity and specialization in less common technologies, reflecting 
deeper knowledge and capabilities. 

8 Specifically, the coefficient estimates are obtained by estimating specification (2) as outlined in 
Section 5.3 using data on the entire US-Europe network (i.e., factoring in also US-Europe 
collaborations). 
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defined in Section 3.3) serves as our key metric for measuring R&I efficiency 
within specific technological domains.  

Figure 6, based on patent data, shows a clear positive (rank) correlation 
between mass and complexity. At the lower end of the complexity spectrum, we 
find more traditional technologies such as machine tools, textile and paper 
machines, as well as materials and metallurgy for which hubs are expected to 
be less connected. In contrast, the upper right quadrant of the graph is 
populated by highly complex technologies, such as computer technology, 
digital communication, medical technology, and pharmaceuticals. These 
technologies typically have the highest levels of R&I efficiency, implying strong 
collaborative networks and effective knowledge exchange systems. 

Figure 6. Complexity and R&I efficiency (patents) 

 

A similar pattern is observed for publication data (Figure 7). These results 
support the notion that more complex technologies not only benefit from but 
also require greater integration and collaboration in their R&I processes, 
thereby validating Hypothesis 2.  

These results highlight the importance of fostering pan-European collaborative 
efforts, especially in advanced technological fields, to maximize innovation 
potential and overcome barriers to knowledge exchange. Additionally, our 
results also highlight areas where increased collaborative efforts could yield 
significant benefits (particularly in highly complex technological domains) and 
the need for targeted strategies to enhance R&I efficiency in sectors that 
currently underperform relative to their complexity level.  
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Figure 7. Complexity and R&I efficiency (publications) 

 

4.3 The fragmentation gap is more pronounced for complex 
technologies in Europe      

In order to validate hypothesis 3, we conduct separate regression analyses for 
the US and Europe, extracting mass coefficients for each WIPO-defined 
technology category. This comparative approach allows us to directly assess 
how R&I efficiency differs between the two regions across various technological 
domains. 

Figure 8 reveals a compelling pattern in the comparative efficiency of US and 
European R&I systems, particularly in relation to technological complexity. The 
visualisation employs a colour gradient where blue represents higher 
complexity technologies and red indicates lower complexity ones. A diagonal 
"competitiveness boundary" line serves as a critical reference point for 
understanding the performance gap.  

Complex technologies (depicted in darker blue) consistently position 
themselves further above the diagonal boundary line. This indicates that these 
sophisticated technological domains suffer the most severe efficiency penalties 
due to the fragmentation of the European system, as compared to the US.  
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Figure 8. Complexity and R&I efficiency in EU/US (patents) 

 

Figure 9 demonstrates that this pattern extends beyond patent activities into 
scientific publications; complex research areas show greater susceptibility to 
the efficiency losses associated with European fragmentation.  

Figure 9. Complexity and R&I efficiency in EU/US (publications) 

 

Overall, our results provide strong evidence in support of hypothesis 3, 
revealing a systematic relationship between technological complexity and the 
efficiency gap between the US and European systems. The pattern is not 
random, but rather shows a clear correlation: as technological complexity 
increases, the negative impact of European fragmentation becomes more 
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pronounced. The parallel finding in both industrial innovation (patents) and 
academic research (publications) suggests that the fragmentation challenge in 
the European R&I system is structural and spans across different dimensions 
of R&I activities.   

5. Robustness analysis 

A number of supplementary analyses were conducted to examine the 
robustness of our findings to alternative geographical specifications. First, we 
redefine our geographical focus to Functional Urban Areas (FUA) and find 
consistent results for both patent and scientific collaborations (Figure A.1 to 
A.4).  

Second, we examine the results at the NUTS3 level for Europe (Figure A.5 and 
A.8) and compare them to Core-Based Statistical Areas (CBSAs, Figure A.6 
and A.9) and Territorial Level 3 (TL3 as defined by Fadic et al., 2019, Figure 
A.7 and A.10) regions in the US. CBSAs define urban-centred economic 
regions, while TL3 regions align with administrative boundaries, making them to 
a certain degree compatible with NUTS3 in terms of scale and economic 
relevance. However, unlike UA or FUA which are defined using a consistent 
methodology across the globe NUTS3, TL3 and CBSAs can slightly differ in 
coverage and definition.  

Despite these differences, our results remain largely consistent across NUTS3, 
TL3, and CBSAs, with two notable variations. For patents, the same state 
coefficient is higher in CBSAs compared to NUTS3, suggesting a stronger 
within-border concentration of patenting activity in the US. For publications, 
Europe shows a higher mass coefficient compared to the US, suggesting more 
concentration of scientific output in European regions. These differences could 
potentially be attributed to the broader territorial coverage of NUTS3 in Europe, 
including all European regions and thus providing more opportunities for within-
country collaborations. In contrast, CBSAs and TL3 regions mostly cover 
metropolitan and micropolitan areas thereby leading to a more concentrated 
collaboration pattern and potentially fewer opportunities for collaboration 
outside metropolitan areas. 

6. Conclusion and policy implications 

This paper provides compelling evidence that the fragmentation of the 
European R&I system represents a significant competitive disadvantage, 
particularly in complex technological domains that are crucial for future 
economic growth. Through our novel complexity-based approach and 
comprehensive analysis of patent and publication data, we have established 
three critical findings. 

First, we conclusively demonstrate that the European R&I system exhibits 
substantially higher fragmentation compared to the US, with European hubs 
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showing notably weaker interconnectivity than their US counterparts. This 
fragmentation is particularly pronounced in patent activities and remains 
evident, though less severe, in scientific publications. The key here is that the 
difference between the EU and the US stems from the EU's unrealized 
potential. Second, our analysis reveals that R&I systems for complex 
technologies inherently require greater integration and collaboration to function 
effectively. The strong correlation between technological complexity and R&I 
efficiency underscores that fragmentation is particularly costly in advanced 
technological domains. Third, and most crucially, we find that the Europe-US 
efficiency gap widens significantly for complex technologies, precisely where 
integration matters most. This "complexity penalty" of European fragmentation 
poses a serious threat to Europe's future competitiveness in strategic sectors 
like AI, biotechnology, and quantum computing. 

These findings carry important policy implications. First, the framework 
proposed offers a new indicator able to capture the degree of fragmentation 
within R&I systems, providing policymakers with a new empirical tool to monitor 
changes in system cohesion over time, identify regions with high untapped 
collaboration potential, and devise strategies to foster more cohesive research 
and innovation across regions. The RISG can also be used to investigate 
pathways to a more inclusive development, by ensuring that smaller or 
peripheral regions are not being systematically excluded from the network, 
thereby enabling a fairer distribution of resources and collaboration 
opportunities based on each region's size, capabilities and overall connectivity. 
Additionally, the framework can be used to monitor the progress of policy 
initiatives, such as the ERA, over time, allowing for the assessment of their 
effectiveness in enhancing integration and collaboration across regions. 

Second, our results call for decisive policy actions in shaping the next 
generation of European R&I programmes. This is particularly relevant for the 
reflections on the design of the next European Framework Programme for R&I. 
Our analysis demonstrates how strategic hub integration remains key to 
strengthen competitiveness, especially in strategic and more complex 
technologies. In this regard, R&I resources could be explicitly weighted toward 
projects that bridge multiple hubs in complex technological domains. Higher 
funding rates could be foreseen for multi-hub collaborative projects in complex 
technologies and dedicated budget lines could be designed for cross-border 
infrastructure sharing in advanced technological domains. This could include 
initiatives intended to create Complex Technology Integration Networks that 
provide sustained funding for multi-hub collaborations. 

Beyond the Framework Programme for R&I, deeper structural changes are 
needed to reduce fragmentation through the development of pan-European 
research institutions with multiple hub locations, harmonisation of intellectual 
property rights and technology transfer procedures, as well as the creation of a 
true ERA with seamless mobility and resource sharing. As an example, 
establishing Hub Mobility Programs has the potential to facilitate researchers 
and innovators movement between major centres. 
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Complementary policies would also need to address broader market 
fragmentation through, for example, the acceleration of the Digital Single 
Market implementation, harmonisation of standards and regulations in 
emerging technology sectors, and the development of integrated European 
markets for research-intensive products and services. 

The evidence suggests these reforms are not merely desirable, but essential 
for maintaining European competitiveness in an increasingly complex 
technological landscape. The cost of continued fragmentation, particularly in 
complex technologies, is simply too high to ignore. As the EU moves toward its 
next Framework Programme for R&I and beyond, policies need to prioritise the 
integration of European R&I hubs and the creation of a truly unified ERA 
capable of competing effectively in the most advanced technological domains. 

7. References 

Abbasiharofteh, M., Broekel, T., & Mewes, L. (2024). The role of geographic 
distance and technological complexity in U.S. interregional co-patenting over 
almost two centuries. Environment and Planning A: Economy and Space, 0(0).  

Autant-Bernard, C., Billand, P., Frachisse, D., & Massard, N. (2007). Social 
distance versus spatial distance in R&D cooperation: Empirical evidence from 
European collaboration choices in micro and nanotechnologies. Papers in 
Regional Science, 86(3), 495-520. 

Balland, P. A. &, Rigby, D., (2017). The geography of complex knowledge, 
Economic geography, 93(1), 1–23. 

Banchoff, T. (2002). Institutions, inertia and European Union research policy. 
JCMS: Journal of Common Market Studies, 40(1), 1-21. 

Bathelt, H., Malmberg, A., & Clusters, P. (2004). Clusters and knowledge: local 
buzz, global pipelines and the process of knowledge creation. Progress in 
Human Geography, 28(1), 31-56. 

Boschma, R., (2005). Proximity and innovation: a critical assessment. Reg. 
Stud., 39 (1), 61–74 

Bristow, G. (2005). Everyone's a ‘winner’: problematising the discourse of 
regional competitiveness. Journal of economic geography, 5(3), 285-304. 

Cantwell, J., & Salmon, J., (2018). Increasing knowledge complexity and 
informal networks in the information age. In: Contractor, F.J., Reuer, J. (Eds.), 
Frontiers of Strategic Alliance Research: Negotiating, Structuring and 
Governing Partnerships. Cambridge University Press, Cambridge, NY. In press. 



 

30 

Chessa, A., Morescalchi, A., Pammolli, F., Penner, O., Petersen, A. M., & 
Riccaboni, M. (2013). Is Europe evolving toward an integrated research area?. 
Science, 339(6120), 650-651. 

Crescenzi, R., Rodríguez-Pose, A., & Storper, M., (2007). On the geographical 
determinants of innovation in Europe and the United States. J. Econ. Geogr., 7 
(6), 673–709. 

Draghi (2024). The future of European competitiveness – A competitiveness 
strategy for Europe. 

Esposito, C. R. (2023). The geography of breakthrough invention in the United 
States over the 20th century. Research Policy, 52(7), 104810. 

European Commission (2024). SRIP 2024 - Science, research and innovation 
performance of the EU – A competitive Europe for a sustainable future, 
Publications Office of the European Union, Luxembourg. 

Fadic, M., Garcilazo, JE., Monroy, A., & Veneri, P. (2019). Classifying small 
(TL3) regions based on metropolitan population, low density and remoteness . 
OECD Regional Development Working Papers, No. 2019/06, OECD Publishing, 
Paris. 

Fally, T., (2015). Structural gravity and fixed effects. NBER Working paper 
series, National bureau of economic research.  

Fleming, L., & Sorenson, O. (2001). Technology as a complex adaptive system: 
evidence from patent data. Research policy, 30(7), 1019-1039. 

Granovetter, M. (1985). Economic action and social structure: The problem of 
embeddedness. American Journal of Sociology, 91(3), 481–510. 

Hidalgo, C. A., & Hausmann, R., (2009). The building blocks of economic 
complexity. Proc. Natl. Acad. Sci. U.S.A., 106(12), 10570-10575. 

Hoekman, J., Frenken, K., & van Oort, F., (2009). The geography of 
collaborative knowledge production in Europe. The Annals of Regional 
Science, 43(3), 721–738. 

Jones, B., (2009). The burden of knowledge and the ‘death of the renaissance 
man’: Is innovation getting harder? Review of Economic Studies, 7(1), 283–
317. 

Lata, R., von Proff, S., & Brenner, T. (2017). The influence of distance types on 
co-patenting and co-publishing in the USA and Europe over time. The Annals of 
Regional Science, 31, 1069. 



 

31 

Maggioni, M. A., & Uberti, T. E. (2005). International networks of knowledge 
flows: an econometric analysis (No. 0519). Papers on Economics and 
Evolution. 

Marshall, A. (1920). Principle of Economics. London: Macmillan 

Maskell, P., & Malmberg, A. (1999). Localised learning and industrial 
competitiveness. Cambridge Journal of Economics, 23(2), 167-185. 

Morescalchi, A., Pammolli, F., Penner, O., Petersen, A. M., & Riccaboni, M. 
(2015). The evolution of networks of innovators within and across borders: 
Evidence from patent data. Research Policy, 44(3), 651-668. 

Morgan, K. (2007). The learning region: institutions, innovation and regional 
renewal. Regional studies, 41(1), 147-159. 

Montobbio, F., & Sterzi,V. (2013). The globalization of technology in emerging 
markets: a gravity model on the determinants of international patent 
collaborations. World Development, 44, 281-299. 

Okubo, Y., & Zitt, M. (2004). Searching for research integration across Europe: 
a closer look at international and inter-regional collaboration in France. Science 
and Public Policy, 31(3), 213-226. 

Porter, M. E. (1990). The competitive advantage of notions. Harvard business 
review, 68(2), 73-93. 

Rodriguez-Pose, A., & Crescenzi, R., (2008). Research and development, 
spillovers, innovation systems, and the genesis of regional growth in Europe. 
Reg. Stud. 42 (1), 51–67. 

Shapira, P., Youtie, Y., Frietsch, R. (Ed.), & Schüller, M. (Ed.) (2010). The 
Innovation System and Innovation Policy in the United States . In Competing for 
Global Innovation Leadership: Innovation Systems and Policies in the USA, EU 
and Asia (pp. 5-20). Fraunhofer IRB. 

Scherngell, T., & Barber, MJ. (2011). Distinct spatial characteristics of industrial 
and public research collaborations: Evidence from the fifth EU Framework 
Programme. The Annals of Regional Science, 46(2), 247–266. 

Santos Silva, J., & Tenreyro, S. (2006). The log of gravity. Rev Econ Stat, 88, 
641–658. 

Santos Silva, J., & Tenreyro, S. (2022). The log of gravity at 15. Portuguese 
Economic Journal, 21(3). 

Schmoch, U. (2008). Concept of a Technology Classification for Country 
Comparison. Final Report to the World Intellectual Property Organization. 



 

32 

Singh, J., & Marx, M. (2013). Geographic constraints on knowledge spillovers: 
political borders vs. spatial proximity. Manag. Sci., 59 (9), 2056–2078. 

United Nations, (2018). World Urbanization Prospects. Department of 
Economic and Social Affairs, Population Division, United Nations. 

Van der Wouden, F. (2020). A history of collaboration in US invention: 
changing patterns of co-invention, complexity and geography. Ind. Corp. 
Chang. 29 (3), pp. 559–619. 

WIPO (2019). Tied in: The Global Network of Local Innovation. Economic 
Research Working Paper No. 58/2019 

8.   Appendix 

Table A.1. Econometric results for patent collaborations in Europe (FUAs) 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 1.625*** 1.635*** 1.339*** 1.398*** 
 

(0.051) (0.069) (0.044) (0.052) 

𝐷𝑖𝑠𝑡𝑖,𝑗   -0.778***   -0.633*** 

    (0.044)   (0.047) 

𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗    2.873*** 1.677*** 

     (0.051) (0.089) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 508057 501138 508057 501138 

Wald Chi-sq 1028.353 1396.208 3230.360 3984.986 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 
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Table A.2. Econometric results for patent collaborations in the US (FUAs) 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 2.512*** 2.581*** 2.495*** 2.534*** 
 

(0.105) (0.099) (0.102) (0.102) 

𝐷𝑖𝑠𝑡𝑖,𝑗   -0.518***   -0.282*** 

    (0.061)   (0.084) 

𝑆𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒𝑖,𝑗    1.526*** 0.948*** 

     (0.126) (0.190) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 159179 159169 159179 159169 

Wald Chi-sq 575.790 684.883 649.313 743.219 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 

 

Table A.3. Econometric results for scientific collaborations in Europe (FUAs) 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 1.627*** 1.563*** 1.575*** 1.591*** 
 

(0.049) (0.051) (0.043) (0.045) 

𝐷𝑖𝑠𝑡𝑖,𝑗   -0.371***   0.046 

    (0.018)   (0.035) 

𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗    1.618*** 1.665*** 

     (0.054) (0.099) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 118737 116503 118737 116503 

Wald Chi-sq 1125.745 1485.711 1805.861 2288.794 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 
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Table A.4. Econometric results for scientific collaborations in the US (FUAs) 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 2.550*** 2.550*** 2.541*** 2.534*** 
 

(0.073) (0.073) (0.072) (0.075) 

𝐷𝑖𝑠𝑡𝑖,𝑗   -0.014   0.087 

    (0.043)   (0.061) 

𝑆𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒𝑖,𝑗    0.387*** 0.578*** 

     (0.099) (0.171) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 62091 62081 62091 62081 

Wald Chi-sq 1226.765 1355.541 1301.983 1541.102 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 

 

Table A.5. Econometric results for patent collaborations in Europe (NUTS 3) 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 2.207*** 1.579*** 1.892*** 1.564*** 
 

(0.032) (0.018) (0.031) (0.017) 

𝐷𝑖𝑠𝑡𝑖,𝑗   -1.203***   -1.088*** 

    (0.011)   (0.013) 

𝑆𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖,𝑗    2.887*** 0.864*** 

     (0.023) (0.033) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 4178632 4178632 4178632 4178632 

Wald Chi-sq 4780.741 16196.037 17423.474 37390.026 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 
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Table A.6. Econometric results for patent collaborations in the US (CBSAs) 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 2.008*** 2.286*** 1.962*** 2.171*** 
 

(0.092) (0.085) (0.078) (0.079) 

𝐷𝑖𝑠𝑡𝑖,𝑗   -1.054***   -0.798*** 

    (0.035)   (0.045) 

𝑆𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒𝑖,𝑗    3.333*** 1.139*** 

     (0.107) (0.098) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 2587712 2587712 2587712 2587712 

Wald Chi-sq 471.730 947.982 973.717 1423.454 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 

 

Table A.7. Econometric results for patent collaborations in the US (TL3) 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 2.482*** 2.581*** 2.448*** 2.536*** 
 

(0.095) (0.079) (0.083) (0.077) 

𝐷𝑖𝑠𝑡𝑖,𝑗   -0.556***   -0.428*** 

    (0.042)   (0.054) 

𝑆𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒𝑖,𝑗    1.749*** 0.687*** 

     (0.131) (0.172) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 159179 159179 159179 159179 

Wald Chi-sq 688.337 1136.817 949.162 1214.971 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 
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Table A.8. Econometric results for scientific collaborations in Europe  (NUTS 
3) 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 4.134*** 3.990*** 4.157*** 4.143*** 
 

(0.077) (0.067) (0.054) (0.055) 

𝐷𝑖𝑠𝑡𝑖,𝑗   -0.472***   -0.058** 

    (0.018)   (0.025) 

𝑆𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒𝑖,𝑗    1.885*** 1.789*** 

     (0.041) (0.062) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 363581 363581 363581 363581 

Wald Chi-sq 2879.272 4211.195 5901.049 6099.576 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 

 

Table A.9. Econometric results for scientific collaborations in the US 
(CBSAs) 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 3.180*** 3.180*** 3.177*** 3.174*** 
 

(0.073) (0.073) (0.073) (0.074) 

𝐷𝑖𝑠𝑡𝑖,𝑗   0.009   0.121*** 

    (0.018)   (0.025) 

𝑆𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒𝑖,𝑗    0.622*** 0.921*** 

     (0.112) (0.160) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 258967 258967 258967 258967 

Wald Chi-sq 1897.971 1952.939 1998.436 2153.396 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 
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Table A.10. Econometric results for scientific collaborations in the US (TL3) 

  (1) (2) (3) (4) 

𝑀𝑎𝑠𝑠𝑖,𝑗,𝑡 3.628*** 3.634*** 3.628*** 3.632*** 
 

(0.097) (0.093) (0.098) (0.096) 

𝐷𝑖𝑠𝑡𝑖,𝑗   -0.107***   -0.064 

    (0.032)   (0.042) 

𝑆𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒𝑖,𝑗    0.535*** 0.385*** 

     (0.097) (0.142) 

Time Fixed Effects Yes Yes Yes Yes 

No. Observations 62091 62091 62091 62091 

Wald Chi-sq 1385.904 1555.938 1488.899 1687.391 

Note: The continuous explanatory variables are taken in natural logarithms; their coefficients can be 
interpreted as elasticities. *, **, *** indicate significance at 10%, 5% and 1 %. Cluster-robust standard errors 
are shown in parentheses. 
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This study presents a novel complexity-based framework to 
analyse fragmentation in the EU’s R&I system, highlighting 
hub connectivity as a critical factor. Drawing on extensive 
patent and publication data (2000–2023), it finds that 
European hubs are significantly less interconnected than 
their US counterparts, particularly in complex technologies 
such as AI, biotech, and quantum computing. The research 
underscores not only a performance gap but also structural 
inefficiencies, calling for more targeted, cross-regional policy 
interventions to enhance Europe’s innovation 
competitiveness 
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